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Abstract

The purpose of the present paper is to explain first- and higher-

order factor analyses from a conceptual rather than a

mathematical perspective. A case is made for performing higher-

order factor analysis when factors are theoretically related.

Actual scores of 301 children on 24 ability measures are used to

demonstrate interpretation of second-order factors using the

FORTRAN program SECONDOR.

3
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Hierarchical Analytic Methods that Yield Different Perspectives

on Dynamics: Aids to Interpretation

Most researchers strive to interpret and describe variables

in a clear, parsimonious manner. Kerlinger (1984) writes,

Facto/ analysis is essentially a method driven by the needs

of parsimony; it reduces multiplicities of tests or measures

to greater simplicities. It tells us, in effect, what tests

or measures belong together: which ones measure the same

thing and how much they do so. (p. 245)

Imagine a researcher faced with scores of 301 children on 24

ability tests. As demonstrated later in this paper, factor

analysis can be used to reduce 24 variables into a smaller set of

first-order factors, thus making interpretation more manageable.

While many researchers are Familiar with extracting first-

order factors from a matrix of associations (e.g., variance-

covariance or correlation matrix), few are familiar with the

concept of performing a factor analysis on correlated first-order

factors (Kerlinger, 1984). These "factors" of first-order

factors are termed second- or higher-order factors. Higher-order

factors provide a broader perspective than first-order factors in

describing relationships between the original variables (Gorsuch,

1983).

The purpose of the present paper is to explain first- and

higher-order factor analyses from a conceptual rather than a

mathematical nierspective. A case is made for performing higher-

order factor analysis when factors are theoretically related. As

4
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mentioned previously, actual scores of 301 children on 24 ability

measures are used to demonstrate interpretation of second-order

factors using the FORTRAN program SECONDOR (Thompson, 1990).

First-Order Factor Analysis

Like many statistical analyses, factor analysis is used to

explain shared variance between variables. Simplistically, how

much of the relationship (i.e., variance-covariance, correlation)

between variables 1 and 2 can be explained by Factor I? Suppose

variable 1 is Reading Speed and variable 2 is Reading

Comprehension. The correlation between variables 1 and 2 is .90;

in other words, variable 1 shares 81% of its variance with

variable 2 and vice-versa. This shared variance could be

explained by a hypothetical construct or factor called Reading

Ability. In essence, factor analysis provides the researcher

with a statistical basis for explaining shared variance and

defining theoretical constructs.

First -order factor analysis is the first step towards

simplifying a set of variables (or other factorable entities)

into a smaller set of factors. The relationship between

variables is represented in an association matrix such as a

variance-covariance or correlation matrix; in factor analysis,

matrices represent relationships between variables, factors, or

variables and factors. Factor analytic procedures attempt to

explain the maximum amount of variance with the fewest number of

factors. From the example in the previous paragraph, Reading

Ability (Factor I) accounted for 81% of the shared variance
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between variables 1 and 2. The communality (symbolized h2) is a

proportion (ranging from 0 to 1) of the original variables'

variance explained by the factor.

Various factor analytic procedures analyze different

portions of variance when extracting or removing factors;

extraction refers to removing shared variance from the matrix of

associations in the form of a factor. Describing different

sources of variance in factor analysis, Weiss (1971) writes,

The general factor-analysis model assumes that the total

variance of a variable is composed of three components:

common variance, unique variance, and error variance. For

each variable included in the factor analysis of a

correlation matrix, the mix of these three components may be

different, but the sum of the components is the same--1.0.

(p. 85)

Common variance is the reliable portion of variance (i.e., degree

of correlation) which a variable shares with other variables.

Unique variance is variance specific to a particular variable.

Error variance is unreliable variance which is unexplained and

sometimes sample-specific (Weiss, 1971).

Principal components analysis, an extraction procedure,

utilizes total variance when extracting factors. Other

extraction procedures (e.g., principal factors analysis) utilize

common variance. For further discussions on the type of variance

used in factor extraction procedures, see Tinsley and Tinsley

(1987) and Weiss (1971).
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After defining the variance to be analyzed (i.e, total,

common) the researcher is faced with the question of how many

factors to extract. Like all methodological decisions, choosing

the number of factors requires judgment on the part of the

researcher. In some instances, the investigator may have

theoretical grounds for specifying a number of factors. In most

cases, a trade-off exists between the fewest number of factors

and the greatest amount of variance explained. Tests of

statistical significance, measures of explained variance, and

visual representations of factors and explained variance can be

used to inform the researcher making these judgments (Tinsley &

Tinsley, 1987; Weiss, 1971).

Eigenvalues are often used in making decisions about the

number of factors extracted. Much like communalities,

eigenvalues are an index of explained variance. However,

eigenvalues are not percentages. Rather, the value of an

eigenvalue may be between 0 and the number of factored entities

(e.g., variables). Typically, factors with eigenvalues greater

than 1 are extracted (Guttman, 1954).

After variance and factor decisions are made, the factor

analyst must interpret the factors. Factor rotation offers the

opportunity to redistribute explained variance in such a way that

the factors are more meaningful. Rotation procedures do not

explain new variance, rather they redistribute previously

explained variance. Factors can be either correlated or

P.,
t
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uncorrelated with each other following rotation, depending upon

the rotation procedure utilized (Gorsuch, 1983).

Orthogonal rotation procedures such as varimax are used when

the researcher believes the factors are uncorrelated. Often, the

researcher values "simple" structure with each variable

correlating on as few factors as possible. Oblique rotation

procedures such as promax are used when the researcher believes

the factors are related or correlated. Factor analysts with more

complex views of reality may value a procedure that allows non-

zero relationships between factors (Gorsuch, 1983).

Because oblique solutions offer a more complex view of

factors (i.e., first-order factors that are correlated), a higher

level of analysis is necessary for interpretation. Gorsuch

(1983) writes,

Rotating obliquely in factor analysis implies that the

factors do overlap and that there are, therefore, broader

areas of generalizability than just a primary factor.

Implicit in all oblique rotations are higher-order factors.

It is recommended that these be extracted and examined so

that the investigator may gain the fullest possible

understanding of the data. (p. 255)

After rotating factors, the researcher must interpret the

contributions of variables and factors. Pattern and structure

coefficients are useful in making these interpretations. Pattern

coefficients are weights used to create scores on the latent

factors, just as beta weights are used to calculate scores on the
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latent variable, YHAT, in regression. Structure coefficients are

an index of the relationship of the variables to the factors.

Because pattern (factors to variables) and structure (variables

to factors) coefficients assume different vantage points, it is

recommended that both be interpreted (Gorsuch, 1983)..

Higher-Order Factor Analysis

In comparing first- and second-order factor analyses,

Thompson (1990) offers the following analogy,

The first-order analysis is a close-up view that focuses on

the details of the valleys and the peaks in mountains. The

second-order analysis is like looking at the mountains at a

greater distance, and yields a potentially different

perspective on the mountains as constituents of a range.

(p. 579)

Taking this analogy further, mountains represent the original

variables (or other factorable entities) that are analyzed. A

first-order analysis could be described as binoculars with a zoom

lens. A second-order analysis could be described as binoculars

with a wide range lens. Notice that both binoculars first- and

second-order analyses) are focused on the mountains (original

variables).

Because second-order factor analysis is a factor analysis of

correlated first-order factors, many researchers make the mistake

of interpreting second-order factors on the basis of first-order

factors (Thompson, 1990). The factor analyst interpreting

second-order factors on the basis of first-order factors is
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interpreting shadows of the shadows of mountains rather than the

mountains themselves. To remedy this high level of abstraction,

Gorsuch (1983) suggests,

To avoid basing interpretations upon interpretations of

interpretations, the relationships of the original variables

to each level of the higher-order factors are

determined.... Interpreting from the variables should improve

the theoretical understanding of the data and produce a

better identification of each higher-order factor. (pp.

245-246).

To examine the original variables from the higher-order

perspective, Gorsuch (1983) recommends multiplying the first-

order pattern matrix by the second-order pattern matrix. The

resulting product matrix (first-order x second-order) can then be

rotated orthogonally by the varimax procedure (Thompson, 1990).

The resulting matrix allows the researcher to interpret the

higher-order factors' relationships to the original variables.

Another method for interpreting the second-order factors on

their relationship to the original variables is to apply the

Schmid-Leiman (1957) solution. In this solution, the first-order

factors are made orthogonal to the second-order factors.

Variance explained by second-order factors is extracted first.

The first-order factors are then residualized of all variance

present in the second-order factors ('i.e., first-order factors

are residualized using the second-order factors). According to

Schmid and Leiman (1957), this solution "...not only preserves

100



Hierarchical Analytic Methods 10

the desired interpretation characteristics of the oblique

solution, but also discloses the hierarchical structuring of the

variables" (p .53). Borrowing again from Thompson's (1990)

analogy, this solution allows the researcher to directly view the

mountains from a second-order perspective.

An Example Using SECONDOR

This section gives an example of second-order factor

analysis using the FORTRAN program, SECONDOR (Thompson, 1990)

with 24 ability measures from 301 junior high children (Holzinger

& Swineford, 1939). SECONDOR performs both first-order and

second-order factor analyses using either original data or a

correlation matrix. The reader interested in SECONDOR is

referred to Thompson (1990). The Holzinger and Swineford (1'329)

data provide an excellent example of one second-order or "G"

factor. Table 1 lists the 24 ability tests or variables used in

the factor analysis.

SECONDOR executes a first-order factor analysis giving

unrotated, orthogonal, and oblique solutions. Four factors were

extracted (eigenvalues > 1) using principal components analysis.

The factors were rotated obliquely using the promax-rotation

procedure. Table 2 presents the first-order pattern

coefficients. Table 3 presents the first-order structure

coefficients.

Inspection of both pattern and structure coefficients aided

in the interpretation of first-order factors. Factor I could be

called Verbal Ability with high correlations on General

11
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Information (5), Paragraph Comprehension (6), Sentence Completion

(7), and Word Meaning (9). Factor II could be called Numerical

Ability with high correlations on Speeded Addition (10) and

Speeded Counting of Dots (12). Factor III could be called Visual

Ability with high correlations on Visual Perception (1), Cubes

(2), and Thorndike Lozenges (4). Factor IV could be called

Recognition Ability with high correlations on Memory of Target

Words (14), Memory of Target Numbers (15), and Memory for Object-

Number Associations (17).

Because the first-order factors interpreted above are based

on an oblique solution, the first-order factors are correlated.

Table 4 presents the first-order factor correlation matrix. The

correlation between first-order factors suggests examining the

variables/factors from a second-order perspective (Gorsuch,

1983).

One second-order or "G" factor was extracted (eigenvalue =

2.069). Table 5 presents the second-order pattern matrix (first-

order factors x second-order factor) and communalities. Table 6

presents the second-order product matrix and communalities; as

mentioned previously, this matrix is a product of the matrices in

Tables 2 and 5. The resulting product matrix focuses on the

original variables from the second-order viewpoint (Gorsuch,

1983). Because a single second-order factor was extracted, no

rotation was possible.

The "G" factor accounts for approximately 30% of the

original variance. The variables Paragraph Comprehension (6),

12
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Word Meaning (9), Speed Coding (11), Math Number Puzzles (21),

Completion of Math Series (23), and Mixed Math Fundamentals (24)

had large squared structure correlations with this factor.

Table 7 presents the Schmid-Leiman solution and

communalities. As mentioned previously, this solution offers a

first- and second-order factor structure. The first-order

factors are orthogonal to the one second-order factor.

Interpretation of the first-order solution is particularly useful

for examining variance unexplained by the "G" factor. Inspection

of the first-order factors shows high correlations involving

General Information (0.598), Paragraph Comprehension (0.564);

Sentence Completion (0.632), Word Meaning (0.568), Speeded

Addition (-0.638), Speeded Counting of Dots (-0.582), and Memory

of Target Words (0.563).

solution, the researcher

factor does and does not

variables.

Discussion

In short, higher-order factor analysis offers different

perspectives on reality and factor structure. Using this

approach, the factor analyst is free to examine varying levels

Using the Schmid-Leiman (1957)

can determine what the second-order

explain in relation Lo the original

generalization

methodologists

and specificity. Despite this freedom, some

such as Nunnally (1978) do not encourage the use

of

of second-order factor analysis. Nunnally (1978) writes,

The average psychologist has difficulty in understanding

first-order factors, and this difficulty is increased with

13
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higher-order factors....she or he is likely to make some

misinterpretations. Also, if factor analysis is partly

founded on the principle of parsimony, it is reasonable to

question the parsimony of having different orders of

factors. (pp. 431-432)

By arguing against different orders of factors, Nunnally

(1978) implies that human behavior should be parsimonious and

would be best described by first-order factors. This logic

appears flawed by what Hume (1957) would call the "is/ought"

error. As Strike (1979) explains, "To deduce a proposition with

an 'ought' in it from premises containing only 'is' assertions is

to get something in the conclusion not contained in the premises,

something impossible in a valid deductive argument" (p. 13).

Clearly, human behavior has no obligation to be

straightforward as researchers have no obligation to take a

simplistic view of the world. Higher-order factor analysis using

interpretation aids such as the Schmid-Leiman (1957) solution

allows the researcher to examine a complex world in a

parsimonious manner.

14
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Table 1

Listing of Ability Tests from Holzinger and Swineford (19391 Data

No. ABBREVIATION Test

1 VISUALPERCEP Visual Perception
2 SPATIALRELAT Cubes (spatial task)
3 PAPERFORMBOA Paper Form Board (spatial task)
4 THORNDIKELOZ Thorndike Lozenges (spatial task)
5 GENERALINFOR General Information-Verbal
6 PARACOMPREHE Paragraph Comprehension
7 SENCOMPLETIO Sentence Completion
8 WORDCLASSIFI Word Classification
9 WORDMEANINGT Word Meaning

10 SPEEDADDITIO Speeded Addition
11 SPEEDCODETES Speeded Coding (code shapes with

letter)
12 SPEEDCOUNTDO Speeded Counting of Dots
13 SPEEDDISCRIM Speeded Discrimination of Curved

and Straight Letters
14 MEMORYWORDST Memory of Target Words
15 MEMORYNUMBER Memory of Target Numbers
16 MEMORYSHAPES Memory of Target Shapes
17 MEMOBJNUMASS Memory of Object-Number Association
18 MEMNUMOBJASS Memory of Number-Object Association
19 MEMFIGWORDAS Memory of Figure-Word Association
20 DEDUCTIVEMAT Deductive Math
21 MATNUMPUZZLE Math Number Puzzles
22 MATHWORDPROB Math Word Problems
23 COMPLETEMATH Completion of Number Series
24 MATHFUNDAMEN Mixed Math Fundamentals

Note. This table lists the names, numbers, and abbreviations of
24 ability tests given to 301 junior high children. The data
were obtained from Holzinger and Swineford (1939).

17
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Table 2

First-Order Pattern Matrix

Factors
Variable I II III IV

1 VISUALPERCEP 0.078 0.042 0.676 0.009
2 SPATIALRELAT -0.062 -0.156 0.732 -0.083
3 PAPERFORMBOA 0.001 0.053 0.613 -0.192
4 THORNDIKELOZ -0.251 0.039 0.792 0.078
5 GENERALINFOR 0.910 0.031 -0.060 -0.131
6 PARACOMPREHE 0.859 -0.026 -0.026 0.021
7 SENCOMPLETIO 0.962 -0.026 -0.089 -0.103
8 WORDCLASSIFI 0.767 -0.005 0.036 0.013
9 WORDMEANINGT 0.864 -0.053 0.045 -0.011

10 SPEEDADDITIO -0.012 0.869 -0.223 0.024
11 SPEEDCOMTES 0.153 0.627 -0.018 0.131
12 SPEEDCOUVTDO -0.107 0.792 0.149 -0.126
13 SPEEDDISCRIM -0.086 0.619 0.380 -0.109
14 MEMORYWORDST 0.059 -0.143 -0.089 0.788
15 MEMORYNUMBER -0.238 -0.127 0.119 0.758
16 MEMORYSHAPES -0.030 -0.037 0.364 0.517
17 MEMOBJNUMASS -0.095 0.301 -0.183 0.641
18 MEMNUMOBJASS -0.036 0.152 0.026 0.541
19 MEMFIGWORDAS 0.204 0.016 0.047 0.418
20 DEDUCTIVEMAT 0.218 -0.165 0.467 0.232
21 MATNUMPUZZLE 0.129 0.320 0.392 0.060
22 MATHWORDPROB 0.450 -0.038 0.348 0.063
23 COMPLETEMATH 0.285 0.065 0.506 0.080
24 MATHFUNDAMEN 0.399 0.304 0.029 0.185

Note. This table presents the first-order, promax-rotated
pattern matrix using a four factor solution.

IS
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Table 3

First-Order Structure Matrix

Factors
Variable I II III IV

1 VISUALPERCEP 0.405 0.278 0.727 0.282
2 SPATIALRELAT 0.193 0.019 0.627 0.092
3 PAPERFORMBOA 0.235 0.175 0.564 0.038
4 THORNDIKELOZ 0.152 0.225 0.716 0.279
5 GENERALINFOR 0.848 0.273 0.322 0.168
6 PARACOMPREHE 0.845 0.262 0.367 0.294
7 SENCOMPLETIO 0.P78 0.235 0.309 0.184
8 WORDCLASSIFI 0.786 0.269 0.391 0.283
9 WORDMEANINGT 0.863 0.247 0.421 0.279
10 SPEEDADDITIO 0.186 0.805 0.046 0.247
11 SPEEDCODETES 0.400 0.719 0.289 0.396
12 SPEEDCOUNTDO 0.185 0.758 0.299 0.166
13 SPEEDDISCRIM 0.259 0.668 0.492 0.208
14 MEMORYWORDST 0.237 0.125 0.164 0.727
15 MEMORYNUMBER 0.031 0.095 0.231 0.674
16 MEMORYSHAPES 0.300 0.246 0.516 0.619
17 MEMOBJNUMASS 0.139 0.437 0.085 0.651
18 MEMNUMOBJASS 0.210 0.337 0.241 0.591
19 MEMFIGWORDAS 0.372 0.245 0.289 0.509
20 DEDUCTIVEMAT 0.456 0.133 0.597 0.409
21 MATNUMPUZZLE 0.437 0.505 0.570 0.351
22 MATHWORDPROB 0.618 0.242 0.564 0.321
23 COMPLETEMATH 0.566 0.344 D.684 0.373
24 MATHFUNDAMEN 0.578 0.512 0.369 0.437

Note. This table presents the first-order, promax-rotated
structure matrix using a four factor solution.
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Table 4
First-Order Factor Correlation Matrix

Factors
I II III IV

I

II

III

IV

1.000 -0.336

1.000

-0.459

0.306

1.000

0.339

-0.350

-0.343

1.000

Note. This table presents the correlation matrix between the
first-order, promax-rotated factors.
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Table 5

Second-Order Pattern Matrix and Communalities

First-Order Factors G (Second-Order Factor) h2

I 0.754 0.568

II -0.679 0.461

III -0.742 0.551

IV 0.699 0.489

Note. This table presents the second-order pattern matrix and
communalities.
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Table 6

Second-Order Product Matrix and Communalities

Variable Second-Order Factor h2

1 VISUALPERCEP 0.595 0.354
2 SPATIALRELAT 0.333 0.111
3 PAPERFORMBOA 0.358 0.128
4 THORNDIKELOZ 0.480 0.231
5 GENERALINFOR 0.571 0.326
6 PARACOMPREHE 0.625 0.390
7 SENCOMPLETIO 0.570 0.325
8 WORDCLASSIFI 0.610 0.373
9 WORDMEANINGT 0.641 0.411

10 SPEEDADDITIO 0.431 0.186
11 SPEEDCODETES 0.619 0.384
12 SPEEDCOUNTDO 0.480 0.230
13 SPEEDDISCRIM 0.560 0.314
14 MEMORYWORDST 0.432 0.187
15 MEMORYNUMBER 0.353 0.124
16 MEMORYSHAPES 0.584 0.341
17 MEMOBJNUMASS 0.445 0.198
18 MEMNUMOBJASS 0.473 0.224
19 MEMFIGWORDAS 0.491 0.242
20 DEDUCTIVEMAT 0.562 0.316
21 MATNUMPUZZLE 0.648 0.420
22 MATHWORDPROB 0.615 0.379
23 COMPLETEMATH 0.690 0.477
24 MATHFUNDAMEN 0.659 0.434

Note. This table presents the second-order product matrix
(first-order pattern x second-order pattern) and communalities.
Since a single second-order factor was extracted, no rotation was
possible.
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Table 7

Schmid-Leiman Solution and Communalities

Variable G

First-Order Solution

I II III IV

1 VISUALPERCEP 0.595 0.051 -0.031 -0.453 0.006 0.563
2 SPATIALRELAT 0.333 -0.041 0.114 -0.490 -0.060 0.369
3 PAPERFORMBOA 0.358 0.001 -0.039 -0.411 -0.137 0.318
4 THORNDIKELOZ 0.480 -0.165 -0.029 -0.531 0.056 0.543
5 GENERALINFOR 0.571 0.598 -0.022 0.040 -0.093 0.694
6 PARACOMPREHE 0.625 0.564 0.019 0.017 0.015 0.710
7 SENCOMPLETIO 0.570 0.632 0.019 0.060 -0.073 0.734
8 WORDCLASSIFI 0.610 0.504 0.004 -0.024 0.009 0.627
9 WORDMEANINGT 0.641 0.568 0.039 -0.030 -0.008 0.736

10 SPEEDADDITIO 0.431 -0.008 -0.638 0.150 0.017 0.616
11 SPEEDCODETES 0.619 0.100 -0.461 0.012 0.094 0.615
12 SPEEDCOUNTDO 0.480 -0.070 -0.582 -0.100 -0.090 0.591
13 SPEEDDISCRIM 0.560 -0.057 -0.454 -0.254 -0.078 0.594
14 MEMORYWORDST 0.432 0.039 0.105 0.060 0.563 0.520
15 MEMORYNUMBER 0.353 -0.156 0.093 -0.079 0.542 0.458
16 MEMORYSHAPES 0.584 -0.020 0.027 -0.244 0.370 0.539
17 MEMOBJNUMASS 0.445 -0.063 -0.221 0.123 0.458 0.476
18 MEMNUMOBJASS 0.473 -0.024 -0.111 -0.017 0.387 0.387
19 MEMFIGWIRDAS 0.491 0.134 -0.012 -0.031 0.299 0.350
20 DEDUCTIVEMAT 0.562 0.144 0.121 -0.313 0.166 0.477
21 MATNUMPUZZLE 0.648 0.085 -0.235 -0.263 0.043 0.553
22 MATHWORDPROB 0.615 0.296 0.028 -0.233 0.045 0.523
23 COMPLETEMATH 0.690 0.187 -0.048 -0.339 0.057 0.632
24 MATHFUNDAMEN 0.659 0.262 -0.223 -0.020 0.132 0.570

Note. The G column represents the second-order solution. The first-order
solution is based on variance orthogonal to the second-order solution. All
first-order values > 1.301 indicated in bold.
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